

Replacement organophosphate flame retardants suggest short-term reproductive and developmental toxicity in Sprague Dawley rats S. Witchey¹, B. Collins¹, G. Roberts¹, K. Shockley², M. Vallant¹, J. Krause⁵, H. Cunny¹, E. Mylchreest³, B. Sparrow³, R. Moyer³, T. Guilarte⁴, and M. Behl¹

¹National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709²Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC ³Battelle Memorial Institute, Columbus, OH ⁴Florida International University, Miami, FL ⁵Social and Scientific Systems, Durham, NC

Introduction

HUMAN EXPOSURE

 Triphenyl phosphate (TPHP) and isopropyl phosphate (IPP) are found in indoor dust, indoor/outdoor air, aquatic biota and food.

TOXICITY

- Data suggests reproductive and developmental toxicity and neurodevelopmental effects in exposed populations.
- Evidence of developmental and neurodevelopmental toxicity in *in* vitro and alternate animal models.
- NTP has previously evaluated TPHP and IPP in in vitro and benchmark concentration to compare minimal risk levels. https://sandbox.ntp.niehs.nih.gov/neurotox/integrative/

STUDY RATIONALE AND OBJECTIVES

- Hand-to-mouth is a common route of exposure (oral). Several studies have reported children have higher organophosphate flame retardant exposure compared to adults (risk).
- Systematic studies to assess the effects of these compounds on the development and maturation of the F1 pups are lacking.
- In support of on-going regulatory actions for TPHP and IPP, NTP conducted the following studies to:
 - 1. Evaluate potential developmental toxicity following pre- and postnatal oral exposure to either TPHP and IPP, probing the limits of toxicity.
 - 2. Assess exposure effects (15,000 ppm TPHP and 10,000 ppm IPP) on cholinesterase activity, thyroid hormones and brain inflammation (using marker translocator protein 23 kDa (TSPO).
 - 3. Determine maternal transfer in utero and PND4.

EXPERIMENTAL DESIGN

Model/species: Pregnant Harlan Sprague Dawley female rats (n= 6-7/dose group)

Doses: 0; 1000; 3000; 10,000; 15,000; 30,000 ppm TPHP or IPP Exposure route/Duration: Dosed feed (NIH-07) from GD6-PND 28 (dams), PND 28-56 (offspring)

Endpoints: Clinical observations, body weight, litter parameters, pubertal attributes and biological sampling to examine cholinesterase activity, maternal thyroid hormone levels, and maternal transfer

SUMMARY OF KEY FIN

- Maternal toxicity occurred at ≥10,000 ppm T
- Pubertal delays observed across all TPHP ex ≥3,000 ppm IPP.
- Blood and brain cholinesterase levels decrea dependent manner in TPHP and IPP expose
- Maternal transfer of TPHP and IPP compone 1000 ppm group.
- **Overall, developmental exposure effects obs** both TPHP and IPP groups.
- Data Tables: https://doi.org/10.22427/NTP-DA7

DINGS PHP and ≥3,000 ppm IPP.	Treatment Effects across groups						
		Dam		Male Offspring		Female Offspring	
	Treatment	TPHP	IPP	TPHP	IPP	TPHP	IPP
	F0 Body weight	↓ ≥10,000	↓ ≥10,000	↓ ≥10,000	↓ ≥3,000	↓ ≥10,000	↓ ≥3,000
xposure groups and	F0 Food consumption	↑ ≥10,000 (ges &lac)	↑ 10,000 (gestation) $\downarrow \ge 1,000$ (lactation)	N/A	N/A	N/A	N/A
ased in a dose-	F0 Liver weight	1 ≥3,000	<u>,</u> ↑ 10,000	N/A	N/A	N/A	N/A
	F0 Brain weight	No Effect	↑ 10,000	↓ ≥10,000	↓ 10,000	↓ ≥10,000	↓ 10,000
d animals. Ints are evident in the	Reproductive Performance/ Litter Viability	↓ ≥10,000	↓ ≥1,000	N/A	N/A	N/A	N/A
	Pubertal Indices	N/A	N/A	↑ delay ≥1,000	↑delay 3,000	↑ delay ≥3,000	No Effect
served at 1000 ppm in	Blood AChE/BChE	↓ ≥3,000	↓ ≥1,000	↓ ≥10,000	↓ ≥1,000	↓ ≥10,000	↓ ≥1,000
	Brain AChE/BChE	N/A	N/A	↓ ≥1,000 AChE ↓ ≥3000 BChE	↓ ≥1,000 AChE ↓ ≥3000 BChE	↓ ≥3,000	↓ ≥1,000 AChE ↓ ≥1,000 BChE
TA-002-00600-0003-0000-1	Thyroid Hormones	↓ ≥10,000	No Effect	N/A	N/A	N/A	N/A
	TSPO	No Effect	No Effect	N/A	↑ dorsal brain regions	N/A	No Effect

These data have not yet been evaluated in the NTP data/peer review process and therefore should be regarded as preliminary at this time.

3.Pubertal Indices

⁰ Delays in BPS in ■ 3000 males at ≥1000 ppm and in VO in females at \geq 3000 ppm TPHP. At 3000 ppm IPP, VO delayed in females.

No offspring in 15,000 ppm TPHP completed BPS or VO and only one 10,000 ppm TPHP female completed during time of examination

6. Maternal Transfer

- Maternal transfer low at GD18 and higher at PND 4.
- Circulating plasma levels increase with dose.
- TPHP and IPP components were found in PND 28 offspring brains (data not shown).